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a b s t r a c t

Ionic liquids (ILs) are a type of potential green solvents, which can be used as a media for reac-
tion and separation. The infinite-dilution activity coefficient is an important parameter to measure
the interaction between ILs and solutes. In this work, we proposed a new method to predict infinite-
dilution activity coefficients of ILs at different temperatures. A temperature-dependent quantitative
structure–property relationship (QSPR) model was developed for a series of organic solutes in the ionic
eywords:
onic liquid
nfinite-dilution activity coefficient
enetic algorithm-variables subset
election
rdinary least-square regression

liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. By using genetic algorithm-
variables subset selection (GA-VSS) and ordinary least-square regression (OLS) methods, six variables,
including temperature and five significant molecular descriptors, were selected and used to build the
temperature-dependent prediction model. The satisfactory results of the internal and external validations
proved the reliability, stability and predictive ability of the built model.
emperature-dependent quantitative
tructure–property relationship

. Introduction

Ionic liquids (ILs), solely composed by organic cations and
rganic or inorganic anions, are a type of novel salts that maintain
table liquid state at or close to room temperature. Compared with
onventional organic solvents, ILs possess many special features,
uch as low-saturated vapor pressure, wide liquid range, excel-
ent thermal and chemical stability, high electrochemical stability,
ow viscosity, etc. [1–3]. The most important feature of ILs is their
esignability, i.e. the physicochemical property can be designed by
uitable choice of anion and cation for a specific application. Hence,
Ls are generally termed as “designable green solvents” [4,5]. ILs
re widely used as reaction media for synthesis of potential new
harmaceutical drug molecules, biomolecules and polymers [6,7],
eservoirs for the controlled release of drug molecules in phar-
aceutical formulations [8], extraction solvent for the removal of
ulfur compounds [9] and organic contaminants from petroleum
rude oils and soil samples [10].

In addition to the features of pure ILs, the knowledge of the
roperties of their mixtures is also very important for the synthe-
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sis and process design. It is essential to know how they interact
with each other. The infinite-dilution activity coefficient �∞

i
is a

quantitative measure to describe the degree of non-ideality for a
solute in a mixture. It gives key information for the understand-
ing of many separation processes that employ ionic liquids, and
it also provides useful information about solute-ionic liquid inter-
molecular interactions. These information are helpful to screen the
solutes for extraction and extractive distillation and other potential
applications [11].

The experimental methods to measure the infinite-dilution
activity coefficients include gas–liquid chromatography (GLC)
[12–14], dilution method [15] and vapor–liquid equilibria (VLE)
measurements [16,17]. Actually, it is unfeasible to experimentally
measure all the possible combinations of anions and cations in ILs
with all the possible solutes. Therefore, the use of prediction meth-
ods for the properties of ILs is very helpful. Recently, Diedenhofen et
al. [18] investigated the infinite-dilution activity coefficients for 38
solutes in three different ionic liquids by using COSMO-RS, which
is a general and fast method for the prediction of thermophysi-
cal properties of liquids. They concluded that COSMO-RS method

could predict the infinite-dilution activity coefficients in various
ionic liquids with good accuracy. Freire et al. [19] also employed
COSMO-RS method to predict binary liquid–liquid equilibria (LLE)
and VLE measurements in several alcohol-ILs systems based on
quantum chemistry calculations. They obtained a reasonable quali-
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ative agreement between the model predictions and experimental
ata. Eike et al. [20] established several QSPR models to predict the

nfinite-dilution activity coefficients of 38 solutes in three ionic liq-
ids, and the squared correlation coefficients ranged from 0.90 to
.99.

Most of the published studies focused on predicting infinite-
ilution activity coefficients at single temperature. However, the
alues of infinite-dilution activity coefficients highly depend on
he temperature even for the same solute-IL system, i.e. the solute
ehaves differently when it interacts with IL at different temper-
tures. Therefore it is desirable and useful to capture the effect of
oth the structural information and temperature on the infinite-
ilution activity coefficients. Eike et al. [20] developed a correlation
f ln �∞

i
with four descriptors for each IL at four different tempera-

ures. The coefficients for the individual descriptors were weighted
y temperature. Though the results are satisfactory, the calculation
rocess is inconvenient, because for each solute-IL system, each
escriptor needs to be weighted by certain temperature. Further-
ore, according to the OECD principles [21], the built QSPR model

hould be validated both internally and externally to evaluate the
odel stability and predictive ability [22,23].
Recently, Revelli et al. [24] described the relationship between

nfinite-dilution activity coefficient and temperature as ln �∞
i

=
i + (Bi/T), which is derived from the Gibbs Helmholtz equation.
ere, Ai and Bi are coefficients of the equation for the ith solute. For
ifferent solutes, Ai and Bi are different and need to be redefined.

nspired the success of these reported works, we aim to propose
new equation to predict infinite-dilution activity coefficients of
ifferent solutes in ILs at any temperatures from know b, X and c
alues for a particular solute, which can be described as:

n �∞
i = b

T
+ Xi + c (Xi = a1xi,1 + a2xi,2 + ... + anxi,n) (1)

here b and c are constants, and Xi is the molecular descriptors
epresenting structural parameters of the ith solute mostly related
o infinite-dilution activity coefficient. Eq. (1) considers the effect of
emperature and structural information. By using Eq. (1), one can
alculate the infinite-dilution activity coefficient values at given
emperature.

The studied dataset includes 39 polar and nonpolar
olutes in the ionic liquid trihexyl(tetradecyl)phosphonium
is(trifluoromethylsulfonyl)imide at three different temperatures
easured by GLC [24]. The theoretical descriptors were calculated

y CODESSA [25] program to describe molecular structures.
y using genetic algorithm-variables subset selection (GA-VSS)
ethod, six descriptors, including temperature and the significant

tructural descriptors related to the infinite-dilution activity
oefficient, were selected, and then a QSPR model was developed.
he model was internally validated by leave-one-out (LOO) cross-
alidation, bootstrap [26] and Y-scrambling [27] techniques, and
xternally validated by one external test set. The applicability
omain (AD) of the built model was also defined.

. Materials and methods

.1. Dataset

In this work, two datasets were employed, the origi-
al set and external test set. The original set included 39
olutes whose experimental values of infinite-dilution activity
oefficients in the ionic liquid trihexyl(tetradecyl)phosphonium

is(trifluoromethylsulfonyl)imide at three different temperatures
302.45 K, 322.35 K and 342.45 K) were collected from the litera-
ure [24]. The type of 39 solutes includes alkanes, alkenes, alkynes,
ycloalkanes, aromatic compounds (benzene, alkyl-substituted
enzene, pyridine and thiophene), ketone, ether, chlorinated
ournal 163 (2010) 195–201

methane, acetonitrile, nitroalkane, alcohols and aldehyde. The
external test set contained 18 solutes, whose experimental val-
ues of infinite-dilution activity coefficients in the same ionic liquid
at four temperatures (303.15 K, 308.15 K, 313.15 K and 318.15 K)
measured by GLC, were collected from the literature [28]. Among
these 18 solutes, 12 solutes were presented in original set, and the
rest of 6 solutes (pentane, cyclopentane, pent-1-ene, hept-1-ene,
oct-1-ene and oct-1-yne) were not contained in the original set.

The original set was composed of 117 samples (39 solutes at
302.45 K, 322.35 K and 342.45 K, respectively) whose experimen-
tal value of infinite-dilution activity coefficient was expressed by
ln �∞

i
, listed in Table 1. The experimental ln �∞

i
values ranged

from −2.813 to 1.278. By fully considering model validation, the
117 samples in the original set were randomly divided into a 94-
sample training set and a 23-sample test set. The training set was
used to construct model, while test set was used to validate the
built model. The external test set was composed of 72 samples (18
solutes at 303.15 K, 308.15 K, 313.15 K and 318.15 K, respectively)
listed in Table 2, which was used to externally validate the pre-
dictive ability of the built model. This external test set contained 6
new structures and their infinite-dilution activity coefficients were
measured at different temperatures. Thus this external test can be
used to evaluate the prediction ability of the model.

2.2. Descriptors generation

The molecular structures were drawn in HyperChem7.0 pro-
gram [29] and pre-optimized using MM+ molecular mechanics
force field. A more precise optimization was done with semi-
empirical PM3 method in MOPAC7.0 [30]. All calculations were
carried out at restricted Hartree–Fock level with no configura-
tion interaction. The molecular structures were optimized using
the Polak–Ribiere algorithm until the root mean square gradient
was 0.01. The MOPAC output files were transferred into CODESSA
program to calculate five types of 282 descriptors: constitutional,
topological, geometrical, electrostatic and quantum chemical. Con-
stant descriptors and highly correlated descriptors (one of any
two descriptors with a correlation coefficient greater than 0.95)
were excluded to reduce redundant and useless information. The
variable T−1 was also added in the descriptor pool. Finally, 127
descriptors were remained for the next step.

2.3. Descriptor selection and model construction

Many applications have proved genetic algorithm (GA) to be a
very effective tool in solving feature selection problems [31–34].
Therefore, GA was employed to select the significant descriptors
in this work. Selection procedure was performed in MOBYDIGS
[35] program by using GA-VSS. The used fitness function was LOO
cross-validation. The important parameters of GA were as follows:
population size 100 and reproduction/mutation trade-off 0.5.

The initial population (i.e. a set of models) with the minimum
number of allowed descriptors is developed by all-subset-method
procedure to explore all the low dimension combination. Then
these models are evaluated by fitness function, and ranked accord-
ing to the fitness score (the squared correlation coefficient Q 2

loo
).

If this population meets the conditions of convergence, it can be
considered as potential solution; otherwise, individual selection,
crossover and mutation are operated to produce new population.

Then the fitness function is used again to evaluate the new popu-
lation. This process continues until the new population matches
the conditions of convergence. When increasing the model size
does not increase the Q 2

loo
value to any significant degree, the best

solution is obtained.



L. Xi et al. / Chemical Engineering Journal 163 (2010) 195–201 197

Table 1
The experimental and predicted infinite-dilution activity coefficients ln �∞ in IL at different temperatures of training set and test set.

Solutes No. T = 302.45 K No. T = 322.35 K No. T = 342.45 K

Exp. Pred. Exp. Pred. Exp. Pred.

Hexane 1 0.086 0.171 40a 0.039 0.082 79 0.01 0.002
3-Methylpentane 2 0.039 0.135 41 −0.02 0.046 80 −0.062 −0.030
Heptane 3a 0.239 0.282 42 0.199 0.193 81 0.174 0.113
Octane 4a 0.392 0.451 43 0.351 0.362 82 0.336 0.282
Nonane 5 0.626 0.617 44 0.588 0.528 83 0.554 0.448
Decane 6 0.678 0.825 45 0.637 0.735 84a 0.61 0.656
Undecane 7 0.842 1.041 46a 0.779 0.952 85 0.742 0.872
Methylcyclopentane 8a −0.163 0.036 47 −0.223 −0.054 86 −0.261 −0.130
Cyclohexane 9 −0.186 −0.003 48 −0.248 −0.092 87a −0.288 −0.170
Methylcyclohexane 10 −0.083 0.120 49 −0.117 0.030 88 −0.151 −0.050
Cycloheptane 11 −0.186 0.045 50 0.593 −0.044 89 1.278 –
Benzene 12a −0.942 −0.760 51 −0.942 −0.849 90 −0.942 −0.930
Toluene 13 −0.777 −0.523 52 −0.777 −0.613 91 −0.755 −0.690
Ethylbenzene 14a −0.616 −0.412 53a −0.562 −0.501 92 −0.528 −0.580
1-Hexene 15 −0.094 −0.291 54 −0.139 −0.380 93 −0.163 −0.460
1-Hexyne 16 −0.357 −0.328 55 −0.371 −0.417 94 −0.400 −0.500
1-Heptyne 17 −0.261 −0.236 56a −0.248 −0.326 95 −0.223 −0.410
2-Butanone 18a −1.273 −1.065 57 −1.309 −1.155 96 −1.470 −1.230
2-Pentanone 19 −1.171 −0.958 58a −1.139 −1.048 97 −1.109 −1.130
1,4-Dioxane 20 −0.673 −0.921 59 −0.713 −1.011 98a −0.734 −1.090
Methanol 21 0.255 0.110 60 −0.02 0.021 99 −0.151 −0.060
Ethanol 22 0.445 0.323 61 0.207 0.234 100 0.01 0.154
1-Propanol 23 0.425 0.302 62a 0.191 0.212 101 0 0.133
2-Propanol 24 0.438 0.276 63 0.199 0.187 102a −0.010 0.107
2-Methyl-1-propanol 25 0.399 0.284 64 0.14 0.194 103 −0.051 0.115
1-Butanol 26a 0.482 0.315 65 0.231 0.226 104 0.039 0.146
Diethyl ether 27a −0.478 −0.266 66 −0.528 −0.356 105 −0.562 −0.440
Diisopropyl ether 28a −0.073 −0.047 67 −0.105 −0.136 106a −0.139 −0.220
Chloroform 29 −1.238 −1.013 68 −1.171 −1.103 107 −1.139 −1.180
Dichloromethane 30a −1.47 −1.084 69 −1.386 −1.173 108 −1.309 −1.250
Tetrachloromethane 31 −0.598 −0.516 70 −0.598 −0.605 109 −0.598 −0.690
Acetonitrile 32 −0.580 −0.838 71 −0.693 −0.928 110 −0.777 −1.010
Nitromethane 33 −0.261 −0.335 72 −0.446 −0.424 111 −0.545 −0.500
1-Nitropropane 34 0.784 0.308 73 0.482 0.219 112 0.300 0.139
Pyridine 35 −0.654 −0.822 74 −0.892 −0.911 113 −1.079 −0.990
Thiophene 36a −0.868 −0.742 75 −0.916 −0.832 114 −0.968 −0.910
Formaldehyde 37 −2.813 −2.646 76 −2.813 −2.735 115 −2.659 −2.820

7
8

2

a

T
T

Propionaldehyde 38a −1.05 −1.022 7
Butyraldehyde 39 −0.968 −0.972 7

a Samples in test set.
.4. Model validation and performance

The internal predictive ability and robustness of the built model
re evaluated by LOO cross-validation and bootstrap approaches.

able 2
he experimental and predicted infinite-dilution activity coefficients ln �∞ in IL at differe

Solutes No. T = 303.15 K No. T = 308.15 K

Exp. Pred. Exp. Pre

Pentanea 1 −0.062 0.051 19 −0.041 0.
Hexane 2 0.086 0.168 20 0.095 0.
Heptane 3 0.231 0.279 21 0.239 0.
Octane 4 0.278 0.448 22 0.307 0.
Cyclopentanea 5 −0.386 −0.124 23 −0.371 −0.
Cyclohexane 6 −0.248 −0.006 24 −0.223 −0.
Cycloheptane 7 −0.128 0.042 25 −0.094 0.
Pent-1-enea 8 −0.248 −0.383 26 −0.223 −0.
Hex-1-ene 9 −0.128 −0.294 27 −0.105 −0.
Hept-1-enea 10 0 −0.177 28 0.02 −0.
Oct-1-enea 11 0.104 −0.022 29 0.131 −0.
Hex-1-yne 12 −0.416 −0.331 30 −0.386 −0.
Hept-1-yne 13 −0.528 −0.240 31 −0.462 −0.
Oct-1-ynea 14 −0.635 −0.110 32 −0.598 −0.
Benzene 15 −0.968 −0.763 33 −0.942 −0.
Methanol 16 0.231 0.107 34 0.215 0.
Ethanol 17 0.307 0.320 35 0.285 0.
1-Propanol 18 0.351 0.298 36 0.336 0.

a Solutes that were not contained in training set.
−1.109 −1.111 116 −1.171 −1.190
−1.022 −1.061 117 −1.050 −1.140
The LOO procedure involves removing one sample from the original
training set and constructing the model only based on the remain-
ing samples and then testing on the removed one sample. In this
form, all the samples in training set are tested, and Q 2

loo
is calculated.

nt temperatures of external test set.

No. T = 318.15 K No. T = 313.15 K

d. Exp. Pred. Exp. Pred.

028 37 −0.01 0.005 55 0.020 −0.017
144 38 0.122 0.122 56 0.157 0.100
255 39 0.262 0.232 57 0.285 0.210
425 40 0.336 0.402 58 0.378 0.380
148 41 −0.342 −0.170 59 −0.315 −0.192
03 42 −0.198 −0.052 60 −0.163 −0.074
018 43 −0.083 −0.004 61 −0.062 −0.026
406 44 −0.198 −0.429 62 −0.163 −0.451
318 45 −0.083 −0.340 63 −0.03 −0.362
201 46 0.039 −0.223 64 0.086 −0.245
045 47 0.148 −0.068 65 0.191 −0.09
355 48 −0.342 −0.377 66 −0.301 −0.399
263 49 −0.416 −0.286 67 −0.357 −0.308
133 50 −0.545 −0.156 68 −0.462 −0.178
787 51 −0.916 −0.809 69 −0.868 −0.831
083 52 0.207 0.061 70 0.207 0.039
296 53 0.270 0.273 71 0.262 0.251
275 54 0.329 0.252 72 0.322 0.230
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n the bootstrap procedure, K n-dimensional groups are generated
y a randomly repeated selection of n-objects from the original
ataset. The model obtained on the first selected objects is used to
redict the values for the excluded sample, and then Q 2

boot
is calcu-

ated for each model. The bootstrapping was repeated 5000 times
or each validated model. In addition, to avoid chance correlation,
-scrambling technique is used [36]. In Y-scrambling procedure,
he response vector Y is randomly reordered (Y-scrambling), and
ew models were recalculated based on randomized responses.
he resulted models should have significantly lower values of the
quared correlation coefficient than the proposed one because the
elationship between the structure and response is broken. This
rocedure is repeated 500 times and the mean value of Q 2

Y-scrambling

s reported.
It is worthwhile to point out that all the validation methods

entioned above just assess the internal predictive ability of mod-
ls [23,37,38]. It is necessary to externally validate the built model,
ecause compared with internal validation methods, external val-

dation can provide a more rigorous evaluation of the model’s
redictive capability. Here, one external test set was employed (as
entioned in Section 2.1).
Model performance was evaluated by the following parameters:

he squared correlation coefficient (R2), which can be interpreted
athematically as the proportionate reduction of total variation

ssociated with the independent variable; the root mean squared
rror (RMSE), which measures the difference between the actual
nd estimated values. RMSE is calculated as below:

MSE =
√∑n

i=1(yi − ŷi)
2

n
(2)

here i represents the ith sample, yi is the experimental values, and
ˆ i is the predicted value by the model; n is the number of samples
n the dataset.

For the external test set, the validation parameter Q 2
ext is calcu-

ated:

2
ext = 1 −

∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − ȳtr)2

(3)

here ȳtr is the averaged value of the response variable for the
raining set; m is the number of the samples in the external test
et.

.5. Applicability domain (AD)

In this work, the applicability domain was verified by the lever-
ge approach to verify prediction reliability [23]. The leverage (h)
s defined as follows:

i = xi(X
T X)

−1
xT

i (i = 1, 2, ..., n) (4)

here xi is the descriptor row-vector of the query sample i; n is the
umber of query samples; X is the n × p matrix of dataset (p is the
umber of selected descriptors). The threshold value of warning

everage h* is defined as 3p′/n, where p′ is the number of the model
escriptors plus one. In fact, leverage can be used as a quantitative
easure of the model applicability domain suitable for evaluat-

ng the degree of extrapolation. It represents a sort of compound
istance from the model experimental space.

Williams plot [39,22] (leverage values versus standardized
esiduals) is used to visualize the model AD. In Williams plot, the
wo horizontal lines indicate the limit of normal values for Y outliers

i.e. samples with standardized residuals greater than 3.0 standard
eviation units, ±3.0�); the vertical straight lines indicate the lim-

ts of normal values for X outliers (i.e. samples with leverage values
reater than the threshold value, h > h*). For a sample in external
est set whose leverage value is greater than h*, its prediction is
Fig. 1. The squared correlation coefficients (R2
tr , Q 2

loo
) versus the number of descrip-

tors.

considered unreliable, because the prediction is the result of sub-
stantial extrapolation of the model.

3. Results and discussions

3.1. Analysis of dataset

Generally, for any QSPR model, quality of the dataset has great
influence on performance of the built model. In order to build a
well generalized QSPR model, a preliminary analysis for the dataset,
mainly detecting outliers, was performed.

A number of models for the whole dataset were developed
using OLS regression based on the descriptors selected by GA-
VSS. By analyzing the applicability domain of most of the models,
sample 89 (cycloheptane) was shown to be a suspected response
outlier (Y outlier) by most of the models. This sample was the
infinite-dilution activity coefficient of cycloheptane at 342.45 K. By
analyzing the experimental values of different cycloalkanes, we
found that the infinite-dilution activity coefficient of methylcy-
clopentane, cyclohexane and methylcyclohexane decreased with
the rise of temperature. But for cycloheptane, the trend was con-
trary and significantly different from others. The experimental
value for this sample may be susceptible. In order to build a reliable
and general model, this sample was removed from the dataset.

3.2. Model construction and internal validation

In GA process, when adding another descriptor does not improve
the statistics of a model to any significant degree, the optimum
subset size is achieved. To avoid the “over-parameterization” of
the model, the increase of the Q 2

loo
value less than 0.02 was chosen

as the breakpoint criterion. At last, the model with six descriptors
was considered as the best one, which can be found from Fig. 1
(the number of descriptors versus the statistical parameters R2

tr and
Q 2

loo
). With the selected descriptors, the following linear equation

was obtained:

ln �∞ = 437.594
T

+ (2.356 × RPCG + 0.113 × �E + 0.003

× PPSA 2 + 7.942 × Vmin
C + 13.604 × Vmax

C ) − 89.337 (5)
ntr = 93, R2
tr = 0.952, RMSEtr = 0.159, Q 2

loo = 0.945,

RMSEloo = 0.171, Q 2
boot = 0.939 and Q 2

Y-scrambling = 0.030
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Table 3
The performance of predictive ability of the built model.

Q 2
ext RMSEtst

Test set 0.950 0.163
External test set 72 samples 0.938 0.181

48 samplesa 0.967 0.132
24 samplesb 0.880 0.252

the reason why sample 14 in external test set is poorly predicted.
The built model has good fitting power and good prediction results
for the external dataset. Furthermore, the majority of samples were
within the applicability domain of the proposed model and were
predicted correctly.
ig. 2. Williams plot for the model with six descriptors. The values of training set,
est set and external test set were labeled differently. The two short dashed hori-
ontal lines are the ±3.0� limit and one short dashed vertical line is the threshold
alue of leverage (h* = 0.226).

The high statistical parameter values indicate that the model is
obust and stable. In addition, the low value of Q 2

Y-scrambling
excluded

he probability of chance correlation. The predicted values of train-
ng set were listed in Table 1.

.3. Applicability domain (AD)

Analyzing AD of the built model can provide information about
eliability of the prediction. Only predictions for samples that fall in
he domain can be considered reliable. The model AD was analyzed
n the Williams plot (shown in Fig. 2). The majority of the samples

ithin the model AD were calculated accurately.
Generally, if the � value is larger than ±3.0�, the sample can

e considered as response outlier. Thus, samples 50 and 34 would
e recognized as response outliers. The sample 50 was the infinite-
ilution activity coefficient of cycloheptane at 322.35 K. From the
nalysis of Section 3.1, we thought that the experimental value
f sample 50 may be susceptible. The sample 34 is the infinite-
ilution activity coefficient of 1-nitropropane at 302.45 K. It is
oorly predicted. Samples 73 (1-nitropropane at 322.35 K) and 112
1-nitropropane at 342.45 K) were well predicted. It is difficult to
nd a reason why the prediction for 34 is poor, however, it is impor-
ant to keep in mind that the quality of the input experimental data
ould be arguable for some of these samples.

From Williams plot, we also can find that five samples (31, 37,
6, 109 and 115) were X outliers (with leverage value higher than
he threshold value of 0.226). In this study, these five samples were
ell predicted, being close to regression line of Fig. 2. Samples 31,

0, 109 were tetrachloromethane at three different temperatures.
ample 70 was within the domain and well predicted, and for sim-
lar samples 31 and 109, their predictions were also good. Samples
7, 76, 115 were formaldehyde at three different temperatures.

.4. Results of test set and external validation

In the present investigation, the built model was validated by

est set and one external test set. The predicted results for test set
ere list in Table 1. The performance of the built model for test

et was shown in Table 3. The plot of the predicted versus experi-
ental ln �∞ of training set and test set was shown in Fig. 3. From

able 1 and Fig. 3, it can be found that samples in test set were all
a 12 solutes (12 × 4 samples) whose chemical structures were contained in train-
ing set.

b 6 solutes (6 × 4 samples) were new structures that were not contained in train-
ing set.

well predicted, indicating the good predictive ability of the built
model for these samples. From Fig. 2, the samples of test set all fall
in the applicability domain of the built model, indicating that the
predictions of these samples were reliable.

The predicted results for external test set were list in Table 2.
The performance of external validation was shown in Table 3. For
external test set, the predictions of most samples were satisfactory
(Q 2

ext equalled to 0.938). As mentioned in Section 2.1, the chemi-
cal structures of 12 solutes in external test set were the same as
those of training set, and for these 48 samples (12 solutes at four
different temperatures), Q 2

ext was 0.967. The results illustrated that
the built model can give accurate prediction for samples that had
common structures with the training set but at different tempera-
tures. For the rest of 6 solutes (24 samples in total) that were not
contained in training set, Q 2

ext was 0.880. The results illustrated that
the built model can also give good prediction for samples that were
completely new structures and at different temperatures.

The Williams plot (Fig. 2) shows that there is one response
outlier in external test set, sample 14. Samples 14, 32 and 50 cor-
respond to the ln �∞ of the 1-octyne at 303.15 K, 308.15 K and
313.15 K, respectively, and their standard residuals were relative
large (more than 2�). By analyzing their experimental values, it can
be found that there is no obvious change with temperature increas-
ing, being different from homologues 1-hexyne and 1-heptyne. By
comparing the experimental values of the training set and external
test set, we can find that infinite-dilution activity coefficients of the
training set at 302.45 K were in agreement with those of external
test set at 303.15 K, expect for the n-alkyne solutes. Maybe that is
Fig. 3. The plots of the predicted versus experimental ln �∞ values of training set
and test set.
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Table 4
The detailed information of the selected descriptors.

Symbol Descriptors Regression Coeff. Std. Reg. Coeff. VIF

Intercept −89.337 – –
T−1 T−1 437.594 0.093 1.018
RPCG Relative positive charge (QMPOS/QTPLUS) [Zefirov’s PC] 2.356 0.623 2.150
�E HOMO–LUMO energy gap 0.113 0.269 1.420

3
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PPSA-2 Total charge weighted PPSA [quantum-chemical PC]
Vmin

C
Min valency of a C atom

Vmax
C

Max valency of a C atom

.5. Interpretation of the built model

The six descriptors employed in the model were T−1, rel-
tive positive charge (QMPOS/QTPLUS) [Zefirov’s PC] (RPCG),
OMO–LUMO energy gap (�E), total charge weighted PPSA [quan-

um chemical] (PPSA-2), min valency of a C atom (Vmin
C ) and max

alency of a C atom (Vmax
C ). The detail information was summa-

ized in Table 4. Multi-colinearity between the six descriptors
as detected by calculating their variation inflation factor (VIF),
escribed as

IF = 1
1 − r2

(6)

here r is the correlation coefficient of multiple regression between
ne descriptor and the others. If VIF equals to one, no inter-
orrelation exists for each descriptor; if VIF maintains within the
ange 1.0–5.0, the corresponding model is acceptable; if VIF is larger
han 10.0, the corresponding model is unstable [40]. The r2 values
f these six descriptors were 0.018, 0.535, 0.296, 0.390, 0.331 and
.503, respectively. Accordingly, their VIF values were 1.018, 2.150,
.420, 1.639, 1.494 and 2.011, respectively. For each descriptor, its
IF value was less than five, which indicates that the built model
as obvious statistic significance.

The correlation between the infinite-dilution activity coeffi-
ients with T−1 is positive, i.e. infinite-dilution activity coefficient
ill decrease with the rise of temperature. Both RPCG and PPSA-2

elong to charged partial surface area (CPSA) descriptors. RPCG is
efined as the most relative positive charge divided by the sum of
ll of the relative positive charges of the molecule, and it represents
he effect of the polar intermolecular interactions. PPSA-2 means
otal charge weighted partial positive surface area. This descriptor
epends directly on the quantum-chemically calculated charge dis-
ribution in the molecule. Therefore, it encodes features responsible
or polar interactions between molecules and the hydrogen-bond
nteraction as well. The intermolecular interactions between ionic
iquid and solute become stronger with the increase of polar inter-
ction, thus the infinite-dilution activity coefficient decreases. �E,
he difference in energy between the highest occupied molecu-
ar orbital (HOMO) and the lowest unoccupied molecular orbital
LUMO), helps to estimate the relative reactivity of the ionic liquid.
t relates to the activation energy of the corresponding chemical
eaction as well as polarization. A large �E implies high stability
or the solute in the ionic liquid. Vmin

C and Vmax
C belong to valency-

elated descriptors that relate to the strength of intramolecular
onding interactions and characterize the stability of the molecule,
he conformational flexibility, and other valency-related proper-
ies.

From the above discussion, it can be seen that the five molecular
escriptors, i.e. the polar intermolecular interaction, hydrogen-

ond interaction, stability together with temperature can account
or the factors influencing the infinite-dilution activity coefficient
f solutes. As indicated by the standard regression coefficients in
able 4, RPCG is the most relevant descriptor related the infinite-
ilution activity coefficient. In this sense, the polar intermolecular
0.003 0.438 1.639
7.942 0.421 1.494

13.604 0.560 2.011

interaction is the preferential determination of infinite-dilution
activity coefficients.

4. Conclusion

The infinite-dilution activity coefficient is an important
parameter to measure the interaction between different sys-
tems of solute-ILs. In this investigation, temperature variable
and five structural descriptors calculated by CODESSA were
selected by GA-VSS method for development of a fast and accu-
rate temperature-dependent QSPR model. The developed model
was validated internally by LOO, bootstrap and Y-scrambling
approaches and externally by one external test set. The obtained
results indicated that our model was robust and stable, and had
good predictive ability. To use the temperature as a variable to build
QSPR model enable us to predict the infinite-dilution activity coef-
ficient at other temperatures for different systems of solute-ILs. The
applicability domain of the built model was also defined. Further-
more, the meanings of these selected structural descriptors were
analyzed in detail. The polar intermolecular interaction is the pref-
erential determination of infinite-dilution activity coefficients. In
summary, the built QSPR model proved to be feasible and promis-
ing for the infinite-dilution activity coefficients prediction in ionic
liquids at different temperatures.
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